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Introduction: The modern field of impact crater 
studies has seen only one main attempt to standardize 
how crater population data are displayed and presented 
[1].  Since that work, not only has the field progressed, 
but so has computer power, display capabilities, and 
relevant statistical methods.  The field has generally 
refrained from using many of the statistical tools avail-
able to them, and instead, as a starting point, rely on 
now-traditional treatment that made many simplifying 
assumptions.  Therefore, different researchers often 
deal with crater data differently, showing what appear 
to be standardized graphs but in fact contain differ-
ences that can change how the data are interpreted. 

This was one of the driving motivations behind the 
2015 "Workshop on Issues in Crater Studies and the 
Dating of Planetary Surfaces."  During the workshop, 
the issue of standardization was raised, as was proper 
treatment of impact crater statistics.  Since that time, 
several of us have worked together to investigate the 
problem and develop techniques and recommendations.  
We hope to spark discussion that will lead to a new, 
inclusive document in the near future that can be refer-
enced by both experienced and novice crater analysts. 

Philosophical Approach:  Traditionally, craters 
are treated as discrete objects that either exist or do not, 
and they are measured in an objective manner to yield 
their properties.  As an alternative, we propose craters 
be thought of as a sample from a probability distribu-
tion:  Impact craters are drawn from an unknown prob-
ability distribution, and they are affected by determin-
istic and stochastic processes; moreover, "crater 
counts" (a term that also carries baggage) are the ana-
lyst's sampling of a population which is already a sam-
ple of the underlying processes.  From the "counts," we 
want to work backwards to understand the probability 
distribution from which the craters were formed and 
processes that have have affected the distribution (un-
derstanding there are sampling issues in our measure-
ment, as well). 

Sources of Uncertainty:  Sources of uncertainty 
are often known within the crater community but are 
rarely discussed.  While researcher variability was 
known at least as early as 1970 [2], they are not fac-
tored into error bars nor standard crater analyses.  Sim-
ilarly, while crater diameter measurement has uncer-
tainty (from technique, reproducibility by one analyst, 
or replicability by others), this is also not factored in. 

Display Change:  Thinking of impact crater obser-
vations from a probability distribution, with numerous 
sources of bias and uncertainty, which themselves 
sample another probability distribution, suggest the 
data be displayed as a "Probability Density Function" 
(PDF) which is built by the "Kernel Density Estima-

tor" (KDE) technique [3,4].  This creates the same dis-
tribution as the traditional "differential" plot from [1]. 

The KDE models each impact crater i as a normal-
ized probability distribution (e.g., a Gaussian) with µi 
at the observed crater diameter Di and σi as an uncer-
tainty in that crater diameter.  Research has shown that 
crater diameter replicability is ≈10% and does approx-
imately follow a Gaussian distribution [2,5,6], so this 
can be used as σ (σi = 0.1Di).  To construct the KDE, 
one determines where to sample diameters (ds) to cre-
ate a visually continuous KDE (since KDEs are con-
tinuous, unbound distributions) and then calculates the 
sum of all craters' probability distributions at each ds. 

Once the PDF is constructed, it can be summed 
from large to small diameters to create the traditional 
cumulative plot (CSFD), or divided by D-3 to create the 
traditional R plot (Fig. 1).  Except for very sparse 
crater datasets (e.g., at large diameters relative to the 
rest of the data), the PDF will reproduce traditionally 
binned data almost exactly.  Differences in sparse data 
are due to binning acting as a more significant smooth-
er than the KDE and individual techniques' variations 
in where to place the diameter bin.  The former can be 
demonstrated, in part, visually by adding what is 
known as a "rug plot" to the horizontal axis which 
shows a small symbol for every Di. 

Confidence Envelope:  Traditionally, crater ana-
lysts use 1-sigma error bars based on Poisson counting 
uncertainty (σ = sqrt(N), where N is the number of cra-
ters sampled).  This σ is based solely upon counting 
statistics; therefore, it does not include any other 
sources described in this abstract.  Also, depending on 
the purpose of a CSFD, uncertainties are incorrectly 
represented as sqrt(N) for they do not include the un-
certainty of counts in individual bins. 

Statistical literature provides a Monte Carlo tech-
nique, known as the bootstrap, for calculating confi-
dence intervals (CIs) for some functions of our crater 
data [7].  The bootstrap has the benefit of working in 
situations where one is not able or not willing to as-
sume an underlying structure (e.g., Gaussian) for the 
probability distribution.  The basic idea behind the 
bootstrap is to generate M bootstrap datasets where M 
is large (e.g., ≥1000; the recommendation has in-
creased over the years as computing power has in-
creased).  Mechanically, for each bootstrap dataset mi, 
N (the size of the original crater dataset) crater diame-
ters are drawn with replacement from the PDF at ran-
dom; because the method is "with replacement," one 
may sample the same crater more than once.  A PDF is 
created for each mi.  For each ds, the new PDF's value 
is stored.  After M runs, at each ds, sort the M values of 
the Monte Carlo PDFs.  From the PDF of the observed 



population, the value corresponding to the desired con-
fidence interval above and below it would be recorded 
for each ds.  E.g., if CI = 95%, M = 100, and at a given 
ds the observed PDF is at the 60th position in the sorted 
list, then the CI for that ds corresponds to the 3rd value 
and 98th value (60×(1–0.95) and 60+(100–60)×0.95). 

This method removes assumptions about the distri-
bution (e.g., Poisson), assumptions about symmetry of 
the confidence bands, and emphasizes that the crater 
population has a confidence band rather than error bars 
on specific bins.  We are exploring varying N for each 
mi to simulate repeatability variations [e.g., 5]. 

Fitting a Power-Law:  By default, most crater 
analysts will use whatever their analysis software of 
choice has to fit a power law to their (binned) data.  
This is most often a form of linear or non-linear least-
squares (LS) (note— linear LS does not mean the fit 
takes the form of a line).  If one were to use this with 
the PDF, we recommend re-sampling the PDF at each 
original crater diameter as the x value and taking the 
PDF±CI at that point as the y±σy value. 

However, it has long been known in the statistics 
literature and the crater literature [8] that LS produces 
biased results, especially in data that are non-uniform 
or non-Gaussian because a core assumption of LS is 
δyi are independent and identically distributed.  A sig-
nificantly less biased method is the Maximum Likeli-
hood Estimator (MLE).  MLE uses the original crater 
diameters and does not rely on any binning or smooth-
ing to produce the fit parameter.  There is a simple 
analytic form of the MLE for a Pareto distribution 
(power law truncated at a minimum diameter), and a 
version for a truncated Pareto distribution (bound at 
large and small diameters) exists but must be solved 
numerically.  MLE has the added benefit that it does 
not rely on the data display or format, so error bars on 
the MLE are the same regardless of whether the data 
are represented as a differential, CSFD or other form. 

We used both a frequentist and Bayesian likelihood 
estimate, as well as LS to the resampled PDF and tradi-
tional bins, to fit power laws to data randomly sampled 
from a power law distribution with differential slope  
–3 for N craters M times, where N = 5–905 and  
M = 2500–40,000 (depending on N; Bayesian prior set 
to –3 exponent with small level of Gaussian noise add-
ed).  The results (Fig. 2) demonstrate the likelihood 
estimates produce the true slope with less bias and less 
variance than LS fitting.  When using LS fitting, the fit 
to the PDF reproduced the true power law with less 
bias and variance than using the traditional bins.  Fi-
nally, in cases of very small N where binning is practi-
cally meaningless, the MLE always returned a fit ex-
ponent, while the binned data often returned an incon-
clusive fit (exponent ∉ (–13,+7)). 

Summary:  We have presented several new sug-
gestions for the treatment of crater population data that 
highlights some of our recent work.  We think the 
methods described herein are a quantitative treatment 

of important characteristics of crater population data, 
factoring in many known but previously ignored uncer-
tainties, and are a better statistical treatment of the 
field. 
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Figure 1. Example CSFD and R-plot with the tradi-
tional bins and new PDF.  This illustrates several of 
our recommendations, both stated in this text (e.g., rug 
plot) and not (e.g., dotted vertical line estimating the 
completeness limit). 
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Figure 2: Monte Carlo test of fits with traditional LS 
and recommended LE; failure ≡ exponent ∉ (–13,+7). 


