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Introduction: Thermal inertia of the Martian sur-
face can be derived from brightness temperatures
measured by the Mars Global Surveyor Thermal
Emission Spectrometer (TES), providing information
about material surface properties. We seek to under-
stand trends in thermal inertia of impact craters by
building a statistical model to include crater mea-
surements as ”explanatory variables” such as loca-
tion (latitude, longitude) of the crater, crater diam-
eter, and various ejecta morphologies. A statistical
methodology is used to model and estimate the nu-
merical values of these explanatory variables relative
to thermal inertia variability.

Proper construction of a crater thermal inertia
(TI) model has three major aspects: 1) Analyze the
probability distribution of TI data, which is the ”re-
sponse variable” of the statistical model. 2) Con-
struct a model to identify which explanatory vari-
ables relate to the variation in the TI data including
a measure of crater spatial dependence. 3) Validate
the ability of the model to predict crater TI values
with the model’s explanatory variables.
Crater Spatial Dependency: Crater location, di-
ameter, and various ejecta morphologies are some ex-
planatory variables of interest for modeling the be-
havior of crater thermal inertia as a function of the
spatial distribution of the craters. Crater spatial den-
sity is constructed from a combination of the full
Mars global crater spatial density distribution and a
spatially random distribution for the same longitude
and latitude region (0◦ to 360◦ longitude by +80◦ to
−80◦ latitude, excluding the polar caps) and crater
diameter distribution.

Let Irand denote the spatially random crater
density for the global region given above. Let Imap
denote the actual spatial density derived from all the
mapped craters of this region. The following ratio
gives a probability of nonrandom crater density at
any given location as

p(x) = τ
Imap(x)

Imap(x) + Irand(x)
, (1)

where 0 ≤ p(x) ≤ 1 is the probability of nonrandom
crater spatial density at location x, τ is a factor to
scale the density ratio between 0 and 1, Imap(x) is
the mapped crater spatial density at location x, and
Irand(x) is the spatially random density at location
x. The location x is from a lattice fitted to the given

Mars global region. A p(x) value near 0.5 indicates
spatial randomness, a probability near 0 suggests a
spatially sparse region, and a probability approach-
ing 1 indicates clustering.
TI Probability Distribution: An adequate model
for the TI data depends on the probability distribu-
tion function (PDF) that best portrays the thermal
inertia data. Figure 1 is a histogram of log10(TI)
data. The histogram shows two prominent modes:
one mode is log10 (TES) ≈ 1, and the second mode
is log10(TES) ≈ 2.5.

Figure 1: Histogram of log10(TI). There are two
prominent modes.

A method to describe multi-modal PDFs is as a
mixture distribution. For the bimodal TI data, let
Y be the random variable log10(TI) with realizations
(measurements) represented as y. Then, for fY (y)
(denoting the functional representation of the mix-
ture probability distribution) we have:

fY (y) = φfY1
(y1) + (1− φ)fY2

(y2), (2)

where the first TI component’s random variable is Y1
with measurements y1. The second TI component’s
random variable is Y2 with measurements y2. The
parameter φ is the fractional amount of fY (y) due to
fY1

(y1), with the second fraction due to fY2
(y2). The

sum of the fractions is always 1.



Trial models of 1 to 4 components were tested
and a 2-component mixture distribution gave the best
model diagnostic outcomes. The first component
with a Gaussian PDF and the second components
with a gamma PDF produced the best TI model.
Equation 3 with a Gaussian and gamma mixture has
the following form:

fY (y) = φfY1
(y1|µ, σ2) + (1− φ)fY2

(y2|θ, κ)

= φ

[
1√

2πσ2
exp

(
− (y1 − µ)2

2σ2

)]
(3)

+ (1− φ)

[
1

θκΓ(κ)
yκ−1
2 exp(−y2/θ)

]
,

where −∞ < y1 < +∞, −∞ < µ < +∞, σ2 >
0, y2 > 0, θ > 0, and κ > 0. The proportion param-
eter φ is as above. As observed, y1 > 0, and µ > 0.
The parameters µ, σ2, θ, κ, and φ all are estimated
using the Expected-Maximization (E-M) method [1].

t TI Model: The two main purposes of model-
ing the thermal inertia (TI) of craters are to 1) iden-
tify the significant crater morphology variables for
describing TI variation, and 2) predict TI values for
selected craters and their morphology variable levels.
We are using TES TI data to identify trends between
layered ejecta crater characteristics and thermal in-
ertia values. The TI model represents each crater’s
thermal inertia by the sizes and levels of the morphol-
ogy variables of these craters. Individual craters are
classified by variable size and level, and an individ-
ual crater’s TI behavior is modeled according to its
morphological class attributes.

Equation 4 is an informal representation of the
TI model:

TI = TIME+LAYERS+TERMINATE+EDGE

+ TESTYPE+p+DIAMETER+p×DIAMETER. (4)

The measured response variable is the thermal iner-
tia (TI) for each crater in the data set. The measured
explanatory morphology variables specifying an indi-
vidual crater’s class are crater spatial density, p, and
crater diameter, DIAMETER. Morphological group-
ing variables for each crater are LAYERS (single,
double, or multiple), layer TERMINATE (pancake
and rampart), and layer EDGE (broad lobe and small
lobe). The type of thermal inertia measurement is
TESTYPE (maximum, median, and minimum).

The size of the effect of each morphological vari-
able is given in Table 1. The “Mixture” column
is the combination of the Gaussian component and
the gamma component. Each morphology variable
has approximately the same effect size on TI. The
“Model.TI” gives unit step changes for the categori-
cal variables, a change of 25% in crater density, and a
10km change in crater diameter. The density by di-
ameter interaction is a combined 25% density change

and 10km diameter change. The closeness of the Mix-
ture parameters values suggests the morphology vari-
ables have the same level of influence crater thermal
inertia.

Table 1. The thermal inertia model anti-log2 of
the component mixture. The parameter effect sizes
(Model.TI) are in inertia units.

Variables Mixture Model.TI
(Intercept) 2.0659 116.3803
TIME.Night 1.0085 10.1966
LAYERS.MLE 1.0067 10.1551
LAYERS.SLE 1.0000 10.0002
TERMINATE.R 0.9961 9.9096
EDGE.SL 1.0047 10.1083
TESTYPE.Median 0.9755 9.4512
TESTYPE.Minimum 0.9152 8.2260
p 0.2396 1.7362
DIAMETER 0.9996 9.9916
I(p * DIAMETER) 0.2500 1.7785

Discussion: We constructed a statistical model to
describe the crater thermal inertia behavior by clas-
sifying craters with a set of morphological variables.
We used a two-component mixture probability dis-
tribution over a univariate Gaussian distribution to
give crater TI values that follow the same bimodal
PDF of the observed TI data. Other PDF combina-
tions need to be examined to improve the TI mixture
model outcomes.

The current model adequately reproduces TI val-
ues as expected from the TI data versus the morpho-
logical variables. The model removes much of the
random variation isolating each effect’s TI variabil-
ity. Additional analysis areas for consideration are
the randomization scheme for establishing an accu-
rate crater spatial density variable. The choice of
morphological variables, or possible non morphologi-
cal variables, may need to be expanded to improve the
assignment of individual craters according to the sizes
and levels of these variables. Additional morpholog-
ical variables should be considered. Variables con-
structed from combinations of the existing explana-
tory variables will be investigated.

While additional work is needed to refine the
TI model, the statistical methodology employed in
this study demonstrates that individual crater ther-
mal inertia behavior is predictable using the crater’s
variables to classify thermal inertia commonalities
among the individual craters, constructing that ini-
tial model.
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