UTILIZING SPATIAL STATISTICS IN CRATER STUDIES. J.D. Riggs' , M.R. Kirchoff?, S.J. Robbins?.
'Northwestern University; *Southwest Research Institute; jamie.riggs@northwestern.edu, kirchoff@boulder.swri.edu

Introduction and Background: Three of the key
assumptions that drive most interpretations of crater
populations are: (1) Craters form stochastically around
a derivable time-dependent function, (2) craters form
randomly across a surface, and (3) the population has
not reached equilibrium. Spatial statistics have been
used to analyze two processes that undermine these as-
sumptions [e.g., 1, 2]: secondary cratering and crater
saturation. Secondary cratering occurs when the ejecta
blocks launched from a primary impact event return to
strike the planetary surface with enough energy to cre-
ate their own craters ("secondary craters" because the
event is secondary to the initial, or "primary," impact
event) [e.g., 3]. These occur in a geologic instant and
are not distributed randomly across the surface, in di-
rect conflict with the first two assumptions. Crater sat-
uration occurs when so many craters have formed that
no new craters can form without an equal fraction of
old ones being erased [e.g., 4]. This results in a crater
population with a distribution that does not change its
characteristics in time and space, in direct conflict with
the third assumption.

There are significant ongoing discussions as to the
magnitude of the effect of secondary cratering and
crater saturation on these three important assumptions,
though that discussion is a separate issue from this ab-
stract. Here, we outline spatial statistic approaches
used to potentially identify these two processes.

Secondary Crater Identification: There are nu-
merous morphologic techniques to identify secondary
impact craters [e.g., 5], but they are not entirely reli-
able, for secondaries will often look like primaries and
hence cannot be distinguished based on morphologic
criteria alone. Therefore, a variety of statistical meth-
ods are also frequently employed [e.g., 5], such as
comparing the spatial density of craters and/or the
crater size-frequency distributions to a model produc-
tion function for primaries. In this abstract we focus on
how spatial statistics can help.

In most work to date the Z-statistic, which is within
the class of distance measurement for nearest neigh-
bors statistics ("NND"), is the spatial statistic that has
been used [e.g., 1]. This can be computed overall for
the region being studied or for subregions. The Z-
statistic is the number of standard deviations from a
Poisson distribution (which primaries should follow)
due to random impacts. Because secondary craters tend
to form more clustered than random, and the Z-statistic
indicates if a studied distribution is more clustered, this
method potentially finds crater populations that are af-
fected by secondaries. The specific interpretation of the
Z-statistic and to what certainty the null hypothesis
(that the craters are spatially random) is not rejected is
subject to variation amongst individual researchers.

The Z-statistic has some advantages in that it is

conceptually straightforward, is not dependent on arbi-
trary region sizes as it uses precise mapping locations,
and it is easily computed. However, NND loses large
scale information for it is dependent on nearest neigh-
bor proximity, individual event information is lost, it
gives only the direction of the deviation from complete
spatial randomness (CSR), and the statistical properties
are not well understood with large departures from
CSR. Additional drawbacks to using this method are:
Loss of information as a result of reducing at least two-
dimensional mapping to a one-dimensional summa-
rization, the error structures are dependent on re-
searcher bias and method implementation such as area
determination, and this method is susceptible to fixed
scales over which analyses are conducted and thus lose
variable scale information.

The formation of secondaries in clusters and in an
annular pattern around a primary suggests three partic-
ular spatial statitical analyses that could work better
than the Z-statistic: two point correlation function
(TPCF), Ripley's K (and related) functions, and circu-
lar statistics using Jones-Pewsey probability distribu-
tions. The TPCF was introduced by [6, 7] to describe
galaxy clustering. The technique counts the number of
potential non-primaries in a series of annuli around a
selected point (e.g., the primary or secondary cluster),
or it counts the features as part of the background. This
is unlike the NND which analyzes the statistics around
each specific crater. The TPCF derives from the joint
probability that two secondaries, for example, lie in in-
finitesimally small area annuli around the two vector
locations of the two secondaries; then, the TPCF is a
function of the vectorial distance between these loca-
tions. Thus, given a putative secondary crater location,
the TPCF is a function of the probability of finding, at
a specified distance, another secondary. The larger the
value of the TPCF, the more clustered and hence non-
random are the secondaries at the specified distance.
Secondaries' clustering can also be used to suggest the
originating primary when that primary is the center of
the annuli. Note that the annulus size must be predeter-
mined, which is a disadvantage.

Bartlett [8] first proposed a second-order (spatial)
correlation function which Ripley [9, 10] developed
into a widely used spatial point statistic that captures
the spatial dependence between different regions of a
point process, such as mapped locations of impact
craters. Ripley's K function is defined to be the ex-
pected number of non-primary craters (more generally,
any designated event) within a specified distance of
some additionally selected other crater, weighted by
the region crater density (the intensity function). Under
CSR, the K function value is the area of a circular re-
gion with the specified distance as the radius. Values of
the K function larger than this circle's area suggest



clustering of events. Advantages of Ripley's K function
include independence from region shape, corrections
for region boundary biases, retention of spatial infor-
mation on crater distributions at all scales of interest,
and use of precise spatial locations of the events in the
estimations. A disadvantage is that the Ripley's K func-
tion is not trivial to interpret. However, Besag's L*
function transformation [11] produces a plot that is in-
tuitive, and hence interpretation is more straightfor-
ward. Bierhaus [1] used K-functions as a method to
identify clustering in Europa’s small-crater population.

The circular Jones-Pewsey [12] family of probabil-
ity distribution functions can be used to form scan sta-
tistics [13, 14] once the Ripley's K function has indi-
cated a clustered, circular region around a primary
crater. For this there are two statistical approaches to
using spatial methods with secondary crater identifica-
tion in conjunction with morphological considerations.
The first set of statistical methods assumes the primary
crater has a known location. The second assumes sec-
ondaries are identified, at least in part, but the primary
location is not known. In the case for the known pri-
mary coordinates, the identification task is locating the
associated secondaries. The scan method uses the cir-
cular probability distribution function to define a
search window, and a local test for clustering is then
employed. Commonly used tests for localized cluster-
ing are Openshaw's [15] Geographical Analysis Ma-
chine, Kulldorff's [16] statistic, and Stone's [17] test.
Upon identifying the secondaries, a circular distribu-
tion from the Jones-Pewsey family then describes the
spatial distribution.

The second set of statistical methods, used when
secondaries are identified without knowledge of the lo-
cation of the primary, use a combination of a spatial
variance-covariance matrix and a model-based cluster
analysis. Model-based cluster methods [18-20] assume
the population of secondaries are from n subpopula-
tions, each corresponding to a cluster associated with
N primary craters, and each secondary distribution fol-
lows a probability density function, such as one from
the Jones-Pewsey family of circular distributions. The
model is parameterized with a direction and distance
vector, and the resulting clusters are identified with
these vectors. The vectors then may be used to find in-
tersections and the potential primary craters.

Saturated Crater Population Identification:
Again, multiple techniques have been developed to po-
tentially determine if crater distributions are in satura-
tion equilibrium. One technique ascertains if the den-
sity of a crater distribution has reached a proposed
maximum attainable by crater populations at which
they become saturated [e.g., 4, 21]. Another technique
examines the crater SFD slopes, as some populations
attain a cumulative SFD slope of —2 when they reach
equilibrium, effectively shallowing [e.g., 4, 22].

Spatial statistical studies of crater saturation have
so far only utilized the Z-statistic described above [2,

23, 24]. In this case, however, the crater population is
expected to be more uniform than random. Lissauer [2]
and Squyres et al. [23] have used the Z-statistic to
show that the dense cratered terrains of Callisto and
Rhea are likely saturated. Kirchoff [24] has explored
more terrains to show that densely cratered surfaces of
many inner and outer solar system objects are likely
saturated. However, because the Z-statistic has the is-
sues discussed above, TPCF and Ripley's K (and re-
lated) functions could be better tools to assess unifor-
mity (regularity) and study crater saturation.
Conclusion: In general, spatial statistics can be
helpful in analyzing secondary or saturated crater pop-
ulations. TPCF, Ripley's K (and related) functions, and
circular statistics using Jones-Pewsey probability dis-
tributions can provide more robust spatial methods
than the traditionally used Z-statistic. They operate on
as many spatial dimensions as are required to manage
the research question of interest, they each have spe-
cific error structures that allow for precise error assign-
ment, and these methods operate over a scale range
suitable for the study objectives. Due to these advan-
tages, we will discuss if these techniques can be ap-
plied to other issues in crater studies.
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