
PyCDA: An Open-Source Library for Automated Crater Detection. M. R. Klear1, 1Launchpad.AI, 149 Natoma
St., San Francisco, CA 94105; (michael.klear@colorado.edu).

Introduction: Automated crater detection has
been the subject of research for decades, since before
[1]. With the maturation of deep neural networks, no-
table advances in computer vision have been achieved
[2]. More recent research in automated crater detection
algorithms has shown promising results by applying
neural networks to this problem [3].

Much of this research claims to achieve near-hu-
man performance on crater detection tasks [4]. Such
claims are difficult to support because these projects
use human-generated annotations for testing. Variance
in humans performing task is high [5], so reports of
performance at this level should only claim to repro-
duce the work of a human annotator with some level of
accuracy.

This research has the potential to greatly improve
the scope of crater surveys. Deploying these models at
scale, however, involves a number of practical chal-
lenges.

The Python Crater Detection Algorithm (PyCDA)
package is an open-source crater detection library for
conducting crater surveys with applied neural network
models. Python presents an ideal open-source commu-
nity for building and supporting this package.

Multiple Models: Originally released as a detec-
tion-only model, the alpha version of PyCDA (0.1.x)
failed to perform on many datasets. This version fea-
tures a single model that is trained on annotated images
from the Mars Express mission, and differences be-
tween Mars and other solar system bodies are great
enough to render this model useless outside of Mars.

Indeed, much of the research in this domain has
pointed out that models tend to fail when applied to
different terrains or bodies [3]. Researchers propose
training or fine-tuning models for novel regions and
bodies.

The utility of PyCDA in future releases, then, will
be to enable users to retrain models using annotated
images.

Public Model Repository: Training models is
computationally expensive. The model featured in Py-
CDA 0.1.X, as an example, took several hours using an
NVIDIA Tesla K80 GPU; this same task on a CPU
computer would take days to weeks to complete.

PyCDA’s intended users may not have access to
such hardware, so training models represents a signifi-
cant time investment for teams. This highlights the
utility of creating a public repository for trained mod-
els; a team can try a set of pre-trained models to find
one with an acceptable performance for the task at
hand.

Figure 1: Convolutional Neural Networks learn to filter pixel values
to produce useful features.

Figure 2: PyCDA 0.1.X fails to yield useful results on this lunar
image

mailto:michael.klear@colorado.edu

PyCDA 0.2.X API: PyCDA 0.2.X will provide
three primary methods.

The first method is detect. When an appropriate
model is selected, the detect method will return a list of
detected craters given an input image.

An input image can optionally be assigned user-
provided annotations. These are required to execute the
remaining two primary methods.

The test method is useful in model selection. This
calls the model to make detections and compares these
with the user-provided annotations to give a measure-
ment of model error. A precursor to this method is in-
cluded in PyCDA 0.1.X (pictured).

The train method allows a user to retrain a model
given the annotations provided with an input image.

By reducing these three tasks to simple calls to the
model object, conducting partially-automated crater
surveys should be easy to do in practice.

Crater Surveys with PyCDA: The process of
conducting a survey of sub-km impact craters with Py-
CDA follows from these methods.

The surveyor must provide a number of hand-la-
beled annotations. It is advisable to identify the set of
unique terrain types in within the survey area and pro-
vide hand-labeled examples from each of these terrain
types.

The surveyor should then look for appropriate
models on the public repository. A model trained on
the same body is ideal, but a similar body may work.
The surveyor should test a set of models on the pro-
vided hand-labeled data to identity the best performer.
This also provides an estimate of uncertainty due to

measurement error when interpreting the results of the
survey.

If no model is acceptable, the best-performing
model should be re-trained to improve performance for
the survey at hand. After retraining the model, a sur-
veyor is encouraged to share the model on the public
repository for future use.

References:
[1] Vinogradova et al. (2002) Proceeding of the

IEEE Aerospace Conference, 3201, 3211.
[2] Krizhevsky A., Sutskever, I. and Hinton, G. E.
(2012) NIPS proceeding, 4824-1, 4824-9. [3] Cohen, et
al. (2016) 47th Lunar and Planetary Science Confer-
ence, arXiv:1601.0097 8 [4] Emami E., et. al (2018)
49th Lunar and Planetary Science Conference, re-
searchgate [5] Robbins et al. (2014) Icarus 234, 109,
131.

Additional Information: For more information,
please call Michael Klear at 650-218-1844 or send an
e-mail to michael.klear@colorado.edu .

Figure 3: The pilot version of PyCDA features a test method.

mailto:michael.klear@colorado.edu
https://www.researchgate.net/publication/322901196_Lunar_Crater_Detection_via_Region-based_Convolutional_Neural_Networks
https://www.researchgate.net/publication/322901196_Lunar_Crater_Detection_via_Region-based_Convolutional_Neural_Networks
https://arxiv.org/abs/1601.00978
https://arxiv.org/abs/1601.00978

